SONY CXK5816PN/M

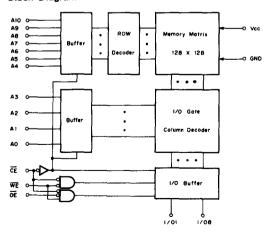
2048-word × 8 bit High Speed CMOS Static RAM

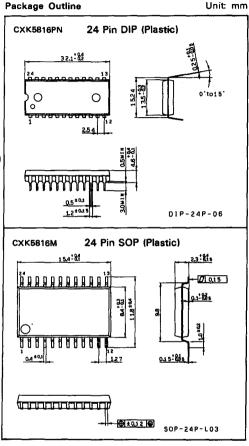
Description

CXK5816PN/M is a 16,384 bits high speed CMOS static RAM organized as 2,048 words by 8 bits and operates from a single 5V supply. This device is suitable for use in high speed and low power spplications in which battery back up for nonvolatility is required.

Features

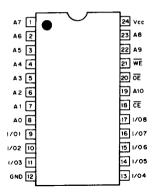
- High speed operation (Access time)
 CXK5816PN/M -10, 10L 100ns (Max.)
 CXK5816PN/M -12, 12L 120ns (Max.)
 CXK5816PN/M -15, 15L 150ns (Max.)
- Low power consumption (Standby) (Operation)
 CXK5816PN/M -10, 12, 15 100μW(Typ.) 125mW(Typ.)
 CXK5816PN/M -10L, 12L, 15L 5μW(Typ.) 125mW(Typ.)
- Single ±5V supply: 5V±10%.
- Fully static memory No clock or timing strobe required
- · Equal access and cycle time
- · Common data input and output: three-state output
- . Directly TTL compatible: All inputs and outputs
- · Low voltage data retention: 2.0V (Min.)


Function


2048-word × 8 bit static RAM

Structure

Silicon gate CMOS IC


Block Diagram

Note) All Typical values are measured under the conditions Vcc=5.0V and Ta=25°C.

Pin Configuration (Top View)

Pin Description

Symbol	Description
A0 to A10	Address input
I/O1 to I/O8	Data input output
CE	Chip enable input
WE	Write enable input
ŌĒ	Output enable input
Vcc	+5V power supply
GND	Ground

Absolute Maximum Ratings

 $Ta = 25^{\circ}C$. GND = 0V

Item	Symbol		Rating	Unit	
Supply voltage	Vcc		-0.5* to +7.0	v	
Input voltage	VIN	1	-0.5* to Vcc+0.5	V	
Input and output voltage	V _t /	0	-0.5* to Vcc+0.5	V	
		CXK5816PN/SP	1.0	w	
Allowable power dissipation	Ръ	CXK5816M	0.7	1 w	
Operating temperature	To	pr	0 to +70	°C	
Storage temperature	Tst	g	-55 to +150	°C	
Soldering temperature	Tso	older	260.10	°C • sec	

^{*} V_{CC}, V_{IN} V_{I/O} Minimum value=-3.0V, Pulse width is under 50 ns.

Truth Table

ĈĒ	ŌĒ	WĒ	Mode	I/O1 to I/O8	Vcc Current
Н	Х	Х	Not selected	High Z	I _{SB1} , I _{SB2}
L	Н	Н	Output disable	High Z	Icci, Icc2
L	L	Н	Read	D out	Icci, Iccz
L	Х	L	Write	D in	Icci, Iccz

Note) X: "H" or "L"

DC Recommended Operating Conditions

Ta = 0 to +70°C, GND = 0V

Item	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Input high voltage	V _{IH}	2.2	_	V _{cc} +0.3	v
Input low voltage	Vil	-0.3	_	0.8	V

DC and Operating Characteristics

 $V_{CC}=5V\pm10\%$, GND=0V, Ta=0 to +70°C

Item	Symbol	CXK58 Test condition -10/12			M/SP	CXK5816PN/M/SP -10L/12L/15L			Unit
			Min.	Typ.**	Max.	Min.	Typ.**	Max.	
Input leakage current	ILI	V _{IN} =GND to V _{CC}	-2	_	2	-2		2	μA
Output leakage current	ILO	$\overline{CE} = V_{IH} \text{ or } \overline{OE} = V_{IH}$ $V_{VO} = GND \text{ to } V_{CC}$	-2		2	-2	_	2	μА
Operating power supply current	Iccı	$\overline{CE} = V_{1L}, I_{OUT} = 0 \text{mA}$		25	60	_	25	60	mA
Average operating current	ICC2	Cycle = Min, Duty = 100% $I_{OUT} = 0 \text{mA}$	_	28 *(31)	60 *(75)	_	28 *(31)	60 *(75)	m A
C+ - 11	I _{SB1}	$\overline{CE} \ge V_{cc} - 0.2V$	Г —	0.02	1.0		0.001	0.05	m A
Standby current	I _{SB2}	$\overline{CE} = V_{tH}$		0.3	2		0.2	1	mA
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{mA}$	2.4			2.4			V
Output low voltage	Vol	$I_{OL} = 4.0 \text{mA}$		_	0.4	_		0.4	V

^{*} Note) Shows CXK5816PN/M/SP-10, 10L value.

Capacitance

Ta=25°C, f=1 MHz

Item	Test condition	Symbol	Min.	Max.	Unit
Input capacitance	V _{IN} =0V	Cin	_	7	pF
Input/output capacitance	V _{I/O} =0V	C _{1/O}	_	10	pF

Note) This parameter is sampled and is not 100% tested.

AC Operating Characteristics

• AC test condition

 $V_{CC} = 5V \pm 10\%$, Ta = 0 to $+70^{\circ}C$

Item	Condition
Input pulse high level	$V_{IH} = 2.4 V$
Input pulse low level	$V_{IL} = 0.6V$
Input rise time	$t_R = 5$ ns
Input fall time	t _F = 5ns
Input and output timing reference level	1.5 V
Output load	CL* = 100pF, 1TTL

^{**} Vcc=5V. Ta=25°C

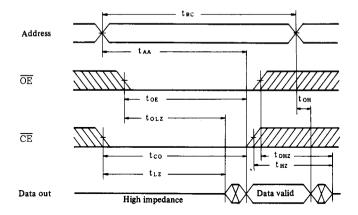
c₁ #

^{*} CL includes scope and jig capacitance.

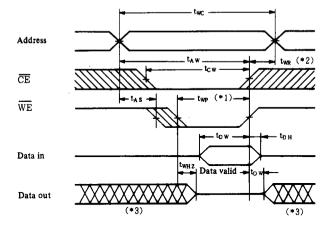
• Read cycle

	Same had	CXK58	16PN/M 10/10L	1	16PN/M -12/12L		16PN/M -15/15L	Unit
Item	Symbol		,				· · · · · · · · · · · · · · · · · · ·	Unit
		Min.	Max.	Min.	Max.	Min.	Max.	L
Read cycle time	tRC	100	-	120	-	150		ns
Address access time	taa	_	100	_	120	_	150	ns
Chip enable access time	tco	_	100	_	120		150	ns
Output enable to output valid	t _{OE}	_	50	-	55		60	ns
Output hold from address change	tон	15	_	15	_	15	_	ns
Chip enable to output in low Z (CE)	t _{LZ}	15		15	_	15	_	ns
Output enable to output in low Z (OE)	toLz	10		10	_	10		ns
Chip disable to output in high Z (CE)	*tH2	0	30	0	40	0	50	ns
Output disable to output in high Z (OE)	*tonz	0	30	0	40	0	50	ns

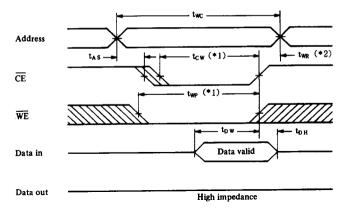
^{*} Note) the and tone are specified by the time length until the output circuit is turned off and not specified by the output voltage level.


• Write cycle

		CXK58	16PN/M	CXK58	6PN/M	CXK58	16 PN/M	
Item	Symbol	-	10/10 L	_	12/12L	-	15/15L	Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Write cycle time	twc	100	_	120	_	150	_	ns
Address valid to end of write	taw	80	_	100	_	120		ns
Chip enable to end of write	tcw	80	_	100	_	120		ns
Data to write time overlap	tow	30	_	35	_	40	_	ns
Data hold from write time	ton	0		0		0		ns
Write pulse width	twp	60	_	75	_	90		ns
Address setup time	tas	0	_	0	_	0		ns
Write recovery time	twn	5	_	5	_	5		ns
Output active from end of write	tow	15	_	15	_	15	_	ns
Write to output in high Z	twHz*	0	30	.0	40	0	50	ns


^{*} Note) twiz is specified by the time length until the output circuit is turned off and not specified by the output voltage level level.

Timing Waveform

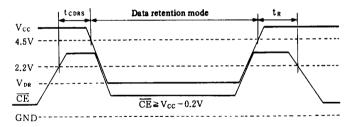

(1) Read Cycle [WE=VIH]

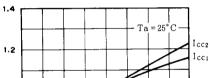
(2) Write Cycle (1): WE Control [OE=VIH]

Write Cycle (2): CE Control [OE=VIL]

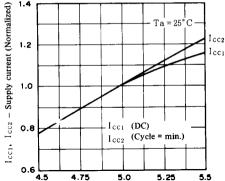
Note)

- *1 A write occurs during the low overlap of \overrightarrow{CE} and \overline{WE} .
- *2 twn is measured from the earlier of CE or WE going high to the end of write cycle.
- *3 During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

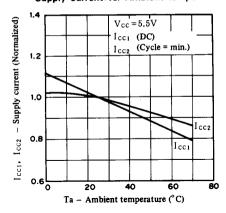

Data Retention Characteristics


 $Ta = 0 \text{ to } +70^{\circ}C$

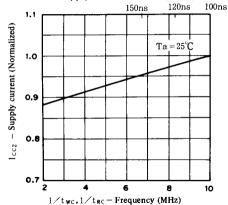
Item	Symbol	Test condition		5816PN/ /12/15	М		5816PN/ L/12L/15		Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Data retention voltage	V _{DR}	$\overline{CE} \ge V_{cc} - 0.2V$	2.0	5.0	5.5	2.0	5.0	5.5	v
	Iccori	$V_{cc} = 3.0 \text{ V}, \overline{CE} \ge 2.8 \text{ V}$	_	12	600		0.6	30	μA
Data retention current	I _{CCDR2}	$V_{cc} = 2.0 \text{ to } 5.5 \text{V},$ $\overline{\text{CE}} \ge V_{cc} - 0.2 \text{V}$	_	20	1000	_	1.0	50	μА
Data retention set up time	topes	Chip disable to data retention mode	0		_	0	-	_	ns
Recovery time	t _R		tec*	T -	_	t _{RC} *			ns


^{*} tRC: Read cycle time

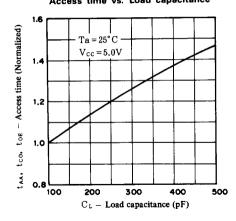
Data Retention Waveform

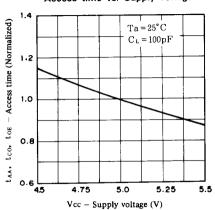


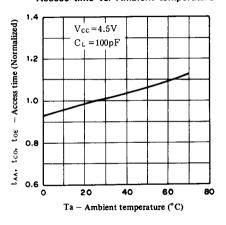
Supply current vs. Supply voltage

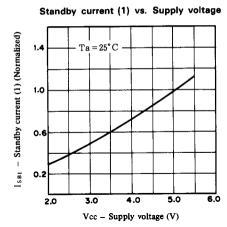


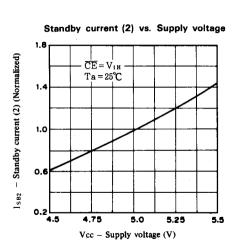
Vcc - Supply voltage (V)

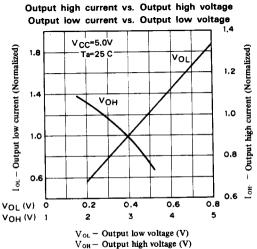

Supply current vs. Ambient temperature

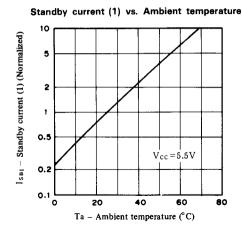

Supply current vs. Frequency

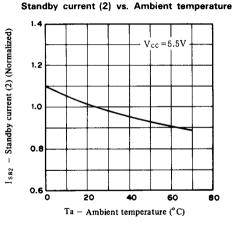

Access time vs. Load capacitance

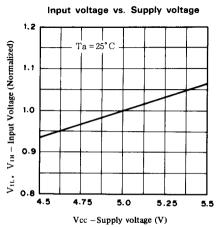



Access time vs. Supply voltage




Access time vs. Ambient temperature





7-90-20

7. Sony Package Product Name

	Tuna	Pac	kage name	Package		Feat	ures	
	Туре	Symbol	Description	rackage	Material*	Lead pitch	Lead shape	Lead pull out direction
		DIP	DUAL IN LINE PACKAGE	CHARLES OF THE SECOND	P C	2.54mm (100MIL)	Through Hole Lead	2-direction
		SIP	SINGLE IN LINE PACKAGE	111111	P	2.54mm (100MIL)	Through Hole Lead	1-direction
Inserted	Standard	ZIP	ZIG ZAG IN LINE PACKAGE	F	P	2.54mm (100MIL) Zig Zag inline	Through Hole Lead	1-direction
Inse		PGA	PIN GRID ARRAY		С	2.54mm (100MIL)	Through Hole Lead	4-direction
	1 : :	PIGGY BACK		С	2.54mm (100MIL)	Through Hole Lead	2-direction	
:	Shrink	SDIP	SHRINK DUAL IN LINE PACKAGE		P	1.778mm (79MIL)	Through Hole Lead	2-direction
	Standard flat package	QFP	QUAD FLAT PACKAGE		Р	1.0mm 0.8mm	Gull- Wing	4-direction
		SOP	SMALL OUTLINE PACKAGE		P	1.27mm (50MIL)	Gull- Wing	2-direction
	Shrink flat	VQFP	VERY SMALL QUAD FLAT PACKAGE		Р	0.5mm	Gull- Wing	4-direction
Surface mounted	package	VSOP	VERY SMALL OUTLINE PACKAGE		P	0.65mm	Gull Wing	2-direction
Surface	Standard chip	PLCC	PLASTIC LEADED CHIP CARRIER		P	1.27mm (50MIL)	J-bend	4-direction
	carrier	LCC	LEAD LESS CHIP CARRIER		С	1.27mm (50MIL)	Lead less	Package side
	Shrink chip carrier	SPLCC (PLCC)	SHRINK PLASTIC LEADED CHIP CARRIER		P	1.27mm Max. (50MIL Max.)	J-bend	4-direction
	Standard 2-direction chip carrier	soj	SMALL OUTLINE J-LEAD PACKAGE		P	1.27mm (50MIL)	J-bend	2-direction

^{*}P.....Plastic, C.....Ceramic