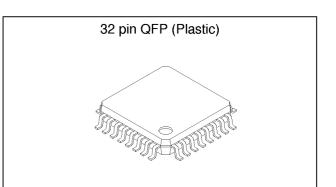
RF Amplifier for CD Players

Description


The CXA2521Q is an IC for RF signal processing of compact discs.

Features

- Supports quadruple speed (RF signal fc 8MHz)
- Peak hold circuit time constant of mirror circuit can be adjusted (switching function provided) Accurate mirror detection is possible from traverse signal of high/low speed search
- Fluctuations of characteristics are very small, which are caused by variations of resistance value and deviations of temperature characteristics for IC internal/external resistors, because the input and feedback resistors of the tracking error amplifier are externally attached
- APC (Automatic Power Control) function

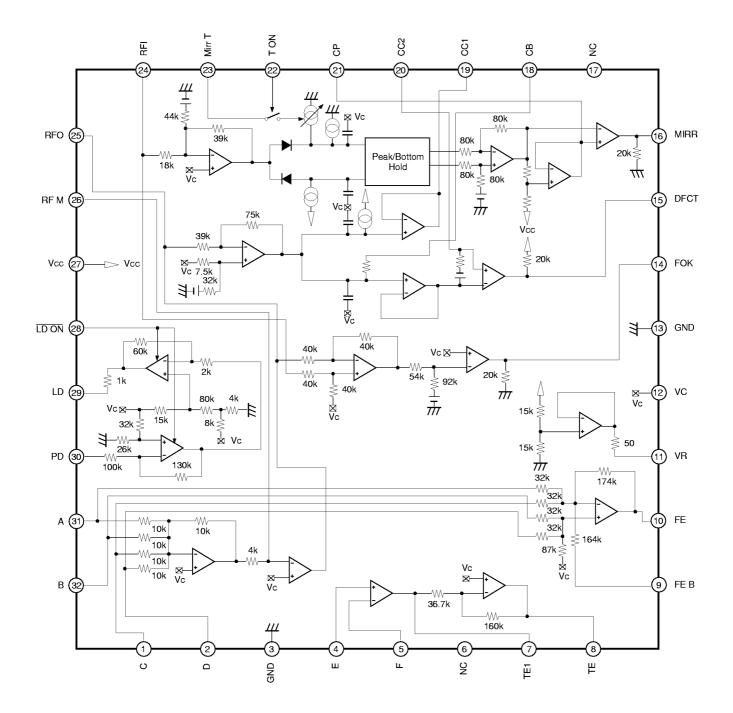
Functions

- RF summing amplifier
- · Focus error amplifier
- · Tracking error amplifier
- APC circuit
- Focus OK detection function
- · Defect detection function
- Mirror detection function

Absolute Maximum Ratings

٠	Supply voltage	Vcc	7	V
•	Storage temperature	Tstg	–65 to +150	°C
٠	Allowable power dissip	ation		
		Pn	800	mW

Operating Conditions


•	Supply voltage	Vcc–GND	+4.5 to +5.5	V
•	Operating temperature	Topr	–20 to +75	°C

Applications

- · Compact disc players
- CD-ROM drive

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Description

Pin No.	Symbol	I/O	Equivalent Circuit	Description
31 32 1 2	A B C D		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input of RF summing amplifier and focus error amplifier.
3	GND			Ground.
4 5 7 8	E F TE1 TE	 0 0	$\begin{array}{c} \begin{array}{c} & 129 \\ \hline 129 \\ \hline 129 \\ \hline 129 \\ \hline 177 \\ \hline 777 \\ \hline $	Tracking error amplifier input for Pins 4 and 5; tracking error amplifier output and tracking error drive input for Pin 7; tracking error drive output for Pin 8.
6	NC			Not connected.
9 10	FE B FE	і О	164K 129 () () () () () () () () () () () () ()	Focus bias adjustment of focus amplifier for Pin 9; focus error amplifier output for Pin 10.

CXA2521Q

Pin No.	Symbol	I/O	Equivalent Circuit	Description
11	VR	0	120 50 ↓ 120 ₩ ↓ 120 ₩ ↓ 120 ₩ ↓ 11	(Vcc+GND)/2 DC voltage output.
12	VC	I		VC center voltage input.
13	GND			Ground.
14	FOK	ο	20K 129 777 777	FOK comparator output.
15	DFCT	0		Defect comparator output.
16	Mirr	0	129 ↓ 129 ↓ 129 ↓ 16 777 777	Mirror comparator output.
17	NC			Not connected.
18	СВ	I		Capacitor connection of Defect bottom hold.
19	CC1	0		Defect bottom hold output.

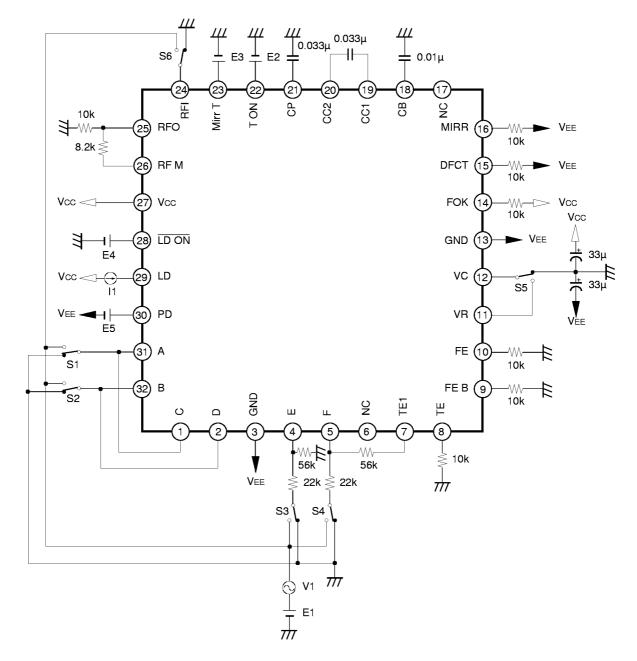
Pin No.	Symbol	I/O	Equivalent Circuit	Description
20	CC2	I		Input of Defect bottom hold output with capacitance coupled.
21	СР	I		Capacitor connection of mirror hold. Non-inversion input of mirror comparator.
22	T ON	I	22 	Peak hold time constant switching. Time constant can be adjusted by connecting this pin to Vcc; fixed by connecting to GND.
23	Mirr T	I	23 → 120K → 80k → 10k 777 → 120K → 80k → 10k 777 → 777 → 777	Peak hold time constant adjustment. This is the time constant which is adjusted when Pin 22 is ON.
24	RFI	Ι	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ 24 \end{array} \\ \hline \\ 777 \end{array} \\ \hline \\ 15k \end{array} \\ \hline \\ 777 \end{array} \\ \hline \\ 15k \end{array} \\ \hline \\ 777 \end{array} \\ \hline \\ \\ 777 \end{array} \\ \hline \\ \\ 777 \end{array} \\ \hline \\ \\ 777 \end{array}$	Input of RF summing amplifier output with capacitance coupled.
25 26	RFO RF M	O I		Non-inversion input of RF drive amplifier for Pin 26; RF signal output for Pin 25; resistance value connected between Pins 25 and 26 which determines the low frequency gain of RF drive amplifier.

CXA2521Q

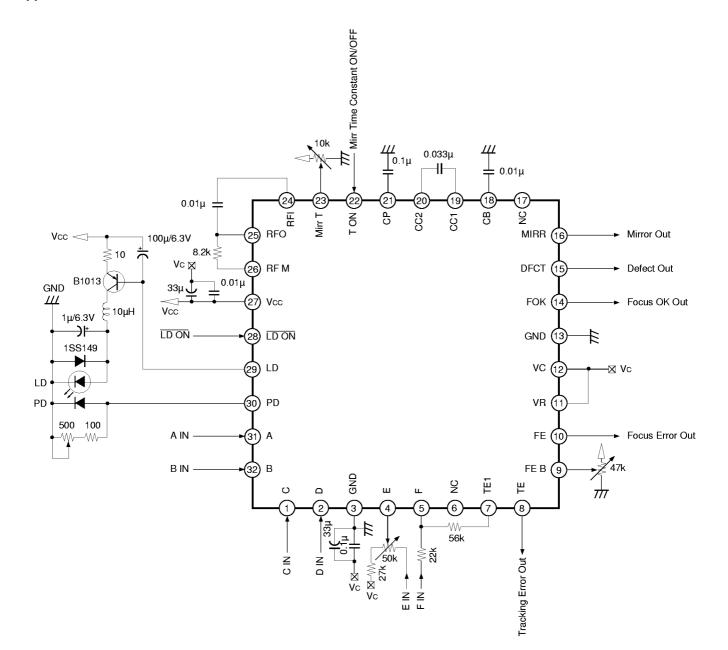
Pin No.	Symbol	I/O	Equivalent Circuit	Description
27	Vcc			Vcc
28	LD ON	I		APC amplifier ON/OFF switching. OFF when connecting to Vcc; ON when connecting to GND.
29	LD	0		APC amplifier output.
30	PD	I		APC amplifier input.

10	VY	, ,	1	1	1		1	1	1	1	1	1			1	1	1	1	1	1		сх
R-11	Cuit	ЧШ	Am	È	뜅	段	>	>	> E	贸	뜅	贸	段	贸	>	>	> E	Вb	段	Вb	铅	В
	Max.	15	٣	40	21.5	I		ю. О	8	23.7	23.7	ю	I	I	1	6. T	30	23.9	23.9	з	I	
ŀ		12	12	0	18.5		1	1	0	20.7	20.7	0			1	I	0	20.9	20.9	0		
	.uiM	∞	-15	-40	15.5	ကို	1.3	1	е Р	17.7	17.7	ę	ကို	ကို	1.9	I	-30	17.9	17.9	6	ဗု	ñ
Description of Output	Waveform and Measurement Method	Pin DC current measurement	Pin DC current measurement	DC voltage measurement	V1 = 100mVpp f = 1kHz	V1 = 100mVpp f=8MHz Difference for G1-1	DC voltage measurement	DC voltage measurement	DC voltage measurement	V1 = 100mVpp f = 1kHz	V1 = 100mVpp f = 1kHz	G2-1 – G2-2	V1 = 100mVpp f = 90kHz Difference for G2-1	V1 = 100mVpp f = 90kHz Difference for G2-2	DC voltage measurement	DC voltage measurement	DC voltage measurement	V1 = 100mVpp f = 1kHz	V1 = 100mVpp f = 1kHz	G3-1– G3-2	V1 = 100mVpp f = 90kHz Difference for G3-1	V1 = 100mVpp f = 90kHz
Measure	-ment Point	27	3 + 13	25				-	9							-	ω					
2	E5	300mV	300mV	2												-	8					
su	E4	-2.0V 3		2.0V												-	2.0V					
Bias Conditions	Ш	8															8					
Bias (E2	-2.0V															-2.0V					
	<u>—</u>	7					300mV	-300mV	20						300mV	300mV	- 10					
	9S						30	Υ Υ							30	8						
	S5	0	0																			
SW Conditions	S4																		0			1
SW Co	ß																	0			0	
	S2				0	0	0	0			0			0	0							
	<u>0</u>				0	0	0	0		0			0			0						
-	Symbol	<u>8</u>	<u> </u>	V1-1	<u>6</u> 1-1	F1-1	V1-2	V1-3	V2-1	G2-1	G2-2	G2-3	F2-1	F2-2	V2-2	V2-3	V3-1	G3-1	G3-2	G3-3	F3-1	
:	Measurement Item	Current consumption	Current consumption	Offset voltage	Voltage gain	Frequency response	Maximum output amplitude H	Maximum output amplitude L	Offset voltage	Voltage gain 1	Voltage gain 2	Voltage gain difference	Frequency response 1	Frequency response 2	Maximum output amplitude H	Maximum output amplitude L	Offset voltage	Voltage gain 1	Voltage gain 2	Voltage gain difference	Frequency response 1	
		5	5		er	iitilqmA ⁻	<u>เ</u> ย						ilqmA ∃:							ilqm/		
Measu	-ment No.	-		m	4	ъ	9	7	ω	თ	9	÷	12	13	14	15	16	17	18	19	20	5

																-	$(Ta = +25^{\circ}C, Vcc = +2.5V, GND)$	5V, GN	$D = V_{C}$	Vee =	-2.5V)
Measure		Measurement Item	Sumbol			SW Cc	SW Condition	_			Bia	Bias Conditions	tions		Measure	-re	Description of Output Waveform and	Min	Tvn	VeV	tic -
-IIIeIIL No.	-			S1	S2	S3	S4	S5	S6	E1	E2	E3	E4	E5	Point	= ±	Weasurement Method		- y h-	IVIGA.	Ĭ
22	Е	Maximum output amplitude H	V3-2				0			300тV	-2.0V	٥٧	2.0V	٥٧			Dc voltage measurement	1.9	I	-	>
23	L	Maximum output amplitude L	V3-3			0				300mV							Dc voltage measurement			-1.9	>
24		Threshold voltage	V4-1						0	change					24		Pin 15 voltage where Pin 22 becomes 0V (GND)	-400	I	-300	> E
25	ЮК	High level output voltage	V4-2						0	-375mV					14		V1 = 1.0Vpp f = 5kHz	2.2	I	I	>
26	1	Low level output voltage	V4-3						0							>	V1 = 1.0Vpp f = 5kHz			-1.8	>
27		Maximum operating frequency	F4-1						0							>	V1 = 1.0Vpp	45		I	kНz
28		High level output voltage	V5-1	0	0					43mV					15		V1 = 90mVpp f = 1kHz	1.8	Ι	Ι	>
29		Low level output voltage	V5-2	0	0											>	V1 = 90mVpp f = 1kHz	I		-2	>
30		Minimum operating frequency	F5-1	0	0											>	V1 = 90mVpp	I		1	kНz
31	FCT	Maximum operating frequency	F5-2	0	0											>	V1 = 90mVpp	N		1	kНz
32	a	Minimum operating input voltage	V5-3	0	0											÷ щ	f (V1) = 50Hz at RFO output voltage	I	Ι	0.5	ddV
33		Maximum operating input voltage	V5-4	0	0											<u>т</u>	f (V1) = 50Hz at RFO output voltage	4. 8.	I	I	dd V
34		High level output voltage	V6-1						0	-0.4V	-2.0V	٥٧	2.0V	٥٧	16		V1 = 0.8Vpp f = 10kHz	1.8	I		>
35		Low level output voltage	V6-2						0	-0.4V						>	V1 = 0.8Vpp f = 10kHz			-2	>
36		Bottom hold frequency response	F6-1						0	-0.2V						> F 5	V1 = 0.8Vpp 55% AM modulation fcarrier = 500Hz	I	400	600	Hz
37	ษยเพ	Bottom hold frequency response	F6-2						0	-0.4V						>	V1 = 0.8Vpp	I	550	006	Ηz
38		Maximum operating frequency 1	F6-3						0		•					>	V1 = 0.8Vpp	30		—	kНz
39		Maximum operating frequency 2	F6-4						0		2.0V	1.5V				>	V1 = 0.8Vpp	80	I	Ι	kНz
40		Minimum operating input voltage	V6-3						0		-2.0V	٥٧				÷	f (V1) = 10kHz	I	0.1	0.2	Vpp
41		Maximum operating input voltage	V6-4						0		->	->					f (V1) = 10kHz	1.8		I	νpp


CXA2521Q

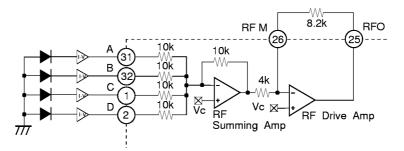
 $(Ta = +25 \circ C, Vcc = +2.5V, GND = Vc, VEE = -2.5V)$


tic.1		>	>	>	>	>	>
Max.		ю. О.	1.4	I	I	ο	0.1
τ, Έ	ч г	1.6	0.1	2.1	2.4	I	I
V. D.M.	MdA.	I	-1.2	0.8	2.1	I	۲. ۹
	waverorm and Measurement Method	DC voltage measurement	DC voltage measurement	DC voltage measurement	DC voltage measurement	l1 = 0.8mADC DC voltage measurement	DC voltage measurement
Measure	Point	29					11
	E5	69mV	123mV	177mV	٥V		
ions	E4	-2.0V 69mV		•	2.0V	-2.0V	2.0V
Bias Conditions	E3	20					
Bias	E2	-2.0V					•
	Ξ	2					->
	S6						
S	S5						0
SW Conditions	S4						
SW Co	ß						
0	S2						
	ي ک						
		V7-1	V7-2	V7-3	V7-4	V7-5	V8-1
	Measurement hem	Output voltage 1	Output voltage 2	Output voltage 3	Output voltage 4	Output voltage 5	47 S Output voltage
t.	<u> </u>			<u>ьс</u>	∀		۸C
Measure -ment No.		42	43	4 29	45	46	47

SONY

Electrical Characteristics Measurement Circuit

Application Circuit

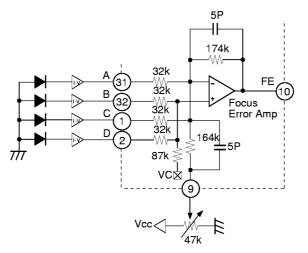


Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Operation

RF Amplifier

The signal currents from the photodiodes A, B, C and D are I-V converted, and input to Pins 1, 2, 31 and 32.



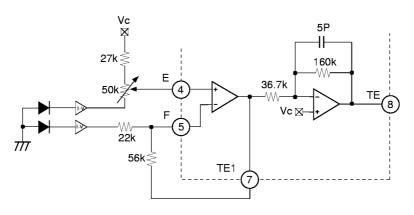
The low frequency component of RFO output voltage is as follows:

$$V_{RFO} = \frac{10k}{10k} \times \frac{8.2k}{4k} \times (A + B + C + D)$$
$$= 2.05 \times (A + B + C + D)$$

Focus Error Amplifier

The operation of (B + D) - (A + C) is performed and the resulting signal is output to Pin 10.

The low frequency component of FE output voltage is as follows:


$$V_{FE} = \frac{174k}{32k} \times (B + D - A - C)$$

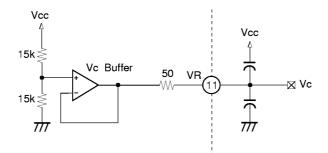
= 5.43 x (B + D - A + C)

These signals are added at the RF summing amplifier and inverted at the RF drive amplifier. Output is to Pin 25.

Tracking Error Amplifier

The signal current from the photodiode F is I-V converted and input to Pin 5 via an input resistor. The signal current from the photodiode E is I-V converted, and input to Pin 4 after its gain is adjusted by the volume. These signals undergo operational amplification at the tracking error amplifier and tracking

drive amplifier, and are output to Pin 8. The input resistance and feedback resistance of the tracking error amplifier are configured with external resistors, so that the absolute errors and deviations of temperature characteristics for IC internal/external resistors are independent of the gain.

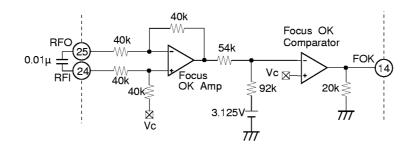


The low frequency component of TE output voltage is as follows:

$$V_{TE} = \frac{56k}{22k} \times \frac{160k}{36.7k} \times (F - E)$$
$$= 11.1 \times (F - E)$$

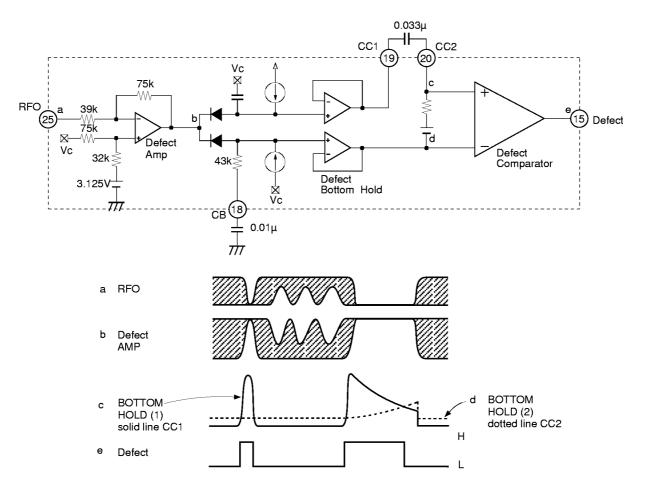
Center Voltage Generation Circuit

The center voltage of VR = (Vcc + GND) is supplied. The maximum current is approximately ± 3 mA.

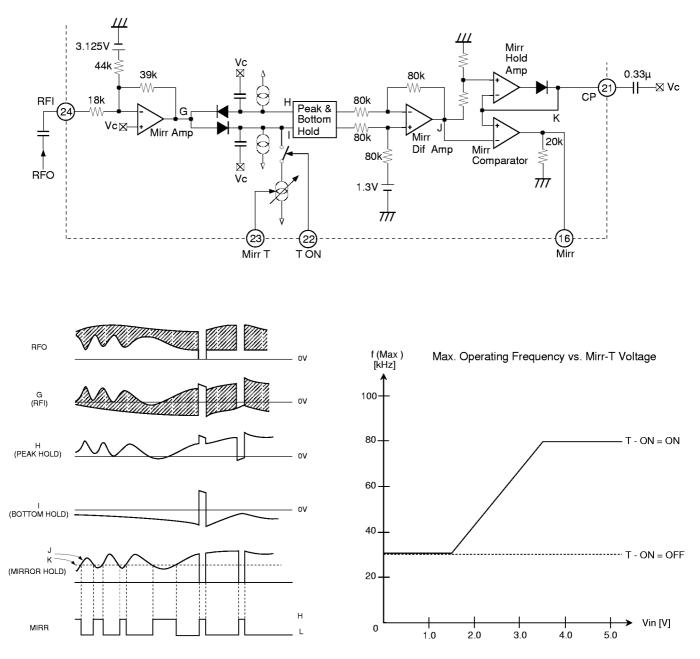


Focus OK Circuit

The focus OK circuit creates the timing window okaying the focus servo form the focus search state.


The low frequency component of RF can be get by obtaining the difference of the Pins 24 and 25 RF signals, whose low frequency components are removed, at the focus OK amplifier. The focus OK output is inverted when $V_{RFI} - V_{RFO} = -0.37V$. The capacitance

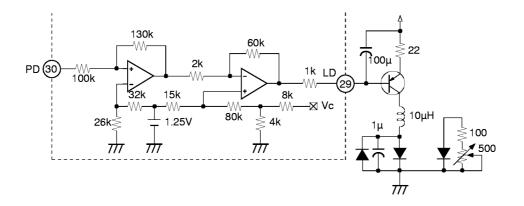
between Pins 24 and 25 is used to determine the time constants of the mirror circuit HPF and the focus OK amplifier LPF. In normal use, with C equal to 0.01μ F selected, fc is equal to 1kHz, and block error rate degradation can be prevented which is caused by RF envelope defects due to scratched discs.


Defect Circuit

A bottom hold is performed on two time constants, long and short, after inversion of RFI signal. The mirror level is hold immediately prior to defect by short time constant bottom hold. The mirror defect detection signal is output by performing a differential + level shift with capacitor coupling and then comparing both signals.

Mirror Circuit

Mirror circuit performs peak and bottom hold after RFT signal has been amplified. The peak hold is executed for Pin 22 with the time constant which follows the traverse signal of 30kHz for OFF (connection to GND) and maximum 80kHz (adjustable with DC voltage of Pin 23) for ON (connection to Vcc). The bottom hold is executed with the time constant which follows the rotation cycle envelope fluctuation.

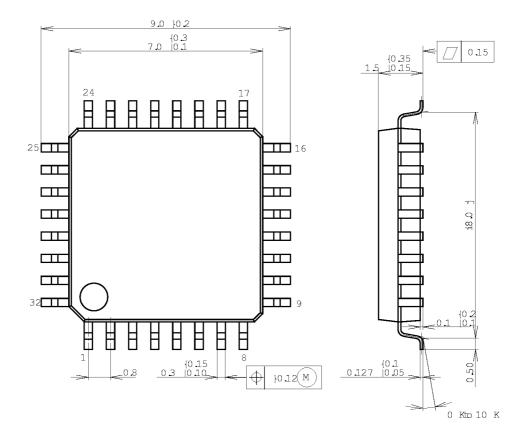


The mirror signal is output by comparing to the signal K (2/3 level of the J peak value which is peak-held with a large time constant) where the difference of hold signals H and I is obtained. The mirror output is low for tracks on the disc and high for the area between tracks

(the mirror areas). In addition, a high signal is output when a defect is detected. The mirror hold time constant must be sufficiently large in comparison with the traverse signal.

APC Circuit

When the laser diode is driven with constant current, the optical output possesses large negative temperature characteristics. Therefore, the current must be controlled with the monitor photodiode to ensure the output remains constant. When $\overline{\text{LD ON}}$ pin is connected to GND, APC is ON; connected to Vcc, it is OFF.



Notes on Handling

Care must be taken in handling because Pin 26 has low electrostatic strength of negative direction.

Package Outline Unit : mm

32PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-32P-L01
EIAJCODE	*QFP032-P-0707-A
JEDEC CODE	

PACKAGE MATER IAL	EPOXY RES N
LEAD TREATMENT	SOLDER PLATING
LEAD MATER IAL	42ALLOY
PACKAGE WEIGHT	0.2g