CXA1077M

14 pin MFP

⊕ ± 0.1 2 [€0]

Unit: mm

+0.4 1.85-0.15

Ø 0.1 5

0.1-0.05

MFP-14P-L01

Wideband Differential Amplifier (DC to 180 MHz)

Package Outline

9.9 - 0.1

RRRRRR

Description

The CXA1077M is a bipolar IC which has been developed as a reproducing preamplifier for digital VTR. It is a 2-channel wideband differential amplifier which incorporates an output enable logic circuit.

Features

- Ultra wideband frequency characteristics: DC to 180 MHz (-3 dB down point) with differential gain 47.5 dB
- Low output offset voltage: Within ±100 mV
- Low noise: Input short-circuit; input conversion noise in 10 kHz to 10 MHz is 2.5 μVrms.

Function

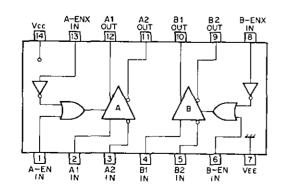
2-channel wideband differential amplifier (Incorporates output enable logic circuit)

Structure

Bipolar silicon monolithic IC

Application

Reproducing preamplifier for VTR and other wideband amplifiers


Absolute Maximum Rating (Ta=25°C)

Supply voltage	Vcc	7	V
 Operating temperature 	Topr	-25 to $+75$	°C
Storage temperature	Tstg	-55 to ± 150	°C
 Allowable power dissipation 	PD	515	mW

Recommended Operating Condition

	-	_			
 Supply voltage 			Vcc	4.5 to 5.5	V

Block Diagram and Pin Configuration

Function	n Tabl	e	_
ENX	L	Н	L = Low Level (Input)
L	OUT	OUT	H = High Level (Input) OUT = Amplifier Output
н	High Z	ουτ	Z = High Impedance
_			

_ 1 _

Pin Description

No.	Symbol	Voltage	Equivalent circuit	Description		
1 6	EN IN	2.5V	(6) W VCC	Output control input pin		
2 3 4 5	Vin	2.2V	4 2 3 5	Signal input pin		
8 13	ENX IN	2.5V	8 (3)	Output control input pin		
9 10 11 12	Vout	2.4V	Vec (1) (9) (9)	Signal output pin		

Electrical Characteristics

(Ta= 25° C, Vcc=5V, VeE=GND, VeN and VeNx: OPEN)

		(Ta-25 C, VCC=5 V,	V L L 1	VD, VLI	and t	CINA. OI LI
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Differrential amplifier voltage gain	Avo	f=100kHz	50	47.5	50	dB
Frequency bandwidth	BW	-3db down point		180	 -	MHz
Input resistance	Rin		_	3	-	kΩ
Input capacity	Cin			17		pF
Output resistance	Ro (ON)	VEN: OPEN f=100kHz	_	40		Ω
Output capacity	Co (OFF)	VEN: GND f=1 MHz	_	8		pF
Output offset voltage	ΔVo		-100		100	mV
Crosstalk between channels	XTALK	f=30MHz		-60		dB
In-phase voltage elimination ratio	CMRR	f=30MHz	_	60	_	dB
Supply voltage fluctuation elimination ratio	SVRR	f=30MHz	_	50	_	dB
Circuit current Ico		When outputting both channels	30	40	50	mA
	Icc	When outputting a single channel	24	30	36	mA
		When both channel outputs are OFF	15	19	25	mA
Input conversion noise	En	Input short-circuit	_	0.77		nV/ √ Hz
	In	Input open		1.6	_	PA/ √ Hz
Controlling voltage	VL	Low level			0.6	V
	Vн	High level	1.6	_		V
Controlling current	lL.	VL=0.6V	-330	-190		μΑ
- Condonning Current	Iн	VH=1.6V	_	-90	100	μΑ
ON-OFF time	TON EN	Vн=5V, VL=0V		35	350	ns
	TOFF EN	VH=5V, VL=0V	-	80	350	ns

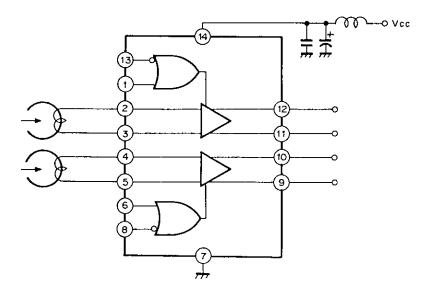
Description of Operation

The circuit structure of the built-in preamplifier (2 channels) is differential input system and the bias is self-bias.

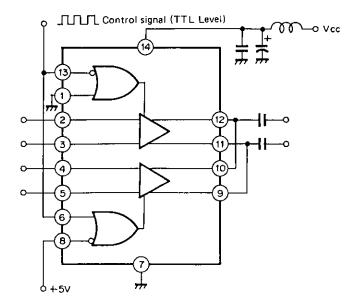
The input signal is input to the input pins (A: pins 2 and 3, and B: pins 4 and 5) and the output signal can be taken out from the output pins (A: pins 11 and 12, and B: pins 9 and 10). The output impedance of the differential amplifier is approximately 40Ω and the structure of the amplifier is emitter follower.

The output signal of this differential amplifier can be controlled by the control signal of the TTL. Its truth table is shown below.

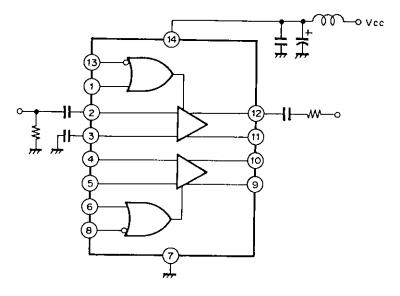
EN A : 1) B : 6 ENX A : (3) B : 8	L	н
L	OUT	OUT
Н	High Z	ΟυΤ


L: Input Low Level
H: Input High Level
Out: Amp Output
High Z: High Impedance

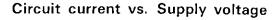
The built-in 2-channel circuit is completely separated except for the power supply unit consequently, it can be operated independently including its output control section.


Application Circuit

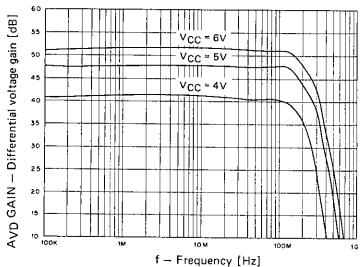
Three application circuit examples of this IC are as shown below.


1. Head amplifier of VTR, etc. (The output enable logic circuit has not yet been used)

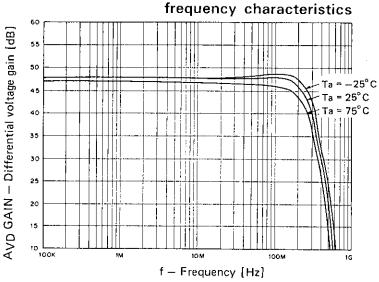
2. Wideband amplifier when control circuit has been used.

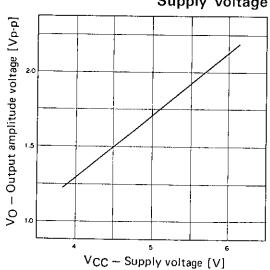

3. Wideband amplifier when it is used with a single input and a single output.

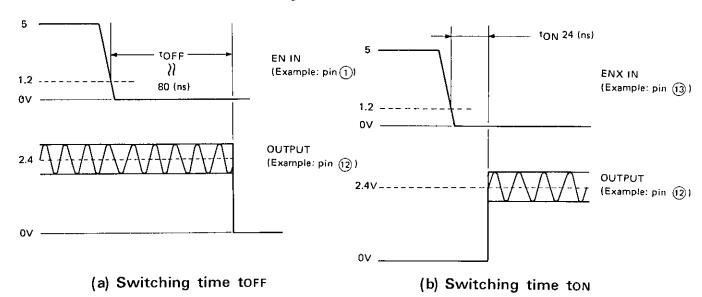
Notes on Application


The CXA1077M has a high voltage gain (approx. 46 dB), so that it should be used by taking special care from the following circuit structural standpoints.

- 1. The power supply should be decoupled by the coil capacitor.
- 2. Oscillation may occur when a capacitative load is applied to the output circuit.
- 3. Using of regulated-DC power supply is recommended.
- 4. There may be cases in which the effect of crosstalk between channels (Within the IC f=30 MHz-60 dB min) cannot be fully exercised depending on the pattern layout.




Frequency characteristics


Temperature dependability of

Output voltage swing vs.
Supply voltage

Switching Characteristics

